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ABSTRACT 

This Report investigates a technique for expressing launch vehicle 
injection accuracy in terms of spacecraft midcourse correction require- 
ments for Earth-Moon missions. A figure-of-merit is defined which 
can be used as a measure of injection accuracy. The variables impor- 
tant to guidance accuracy such as injection energy, launch azimuth, 
lunar declination, and Earth-Moon distance are discussed. A “best” 
target coordinate system is developed and numerical results which 
enable the engineer to relate launch vehicle injection accuracy to 
spacecraft midcourse correction requirements are presented. Both 
miss-only” type midcourse corrections and “miss-plus-time” correc- “ 

tions are considered. purhor 

1. INTRODUCTION 

In the design of an Earth-Moon mission, a nominal 
trajectory (or trajectories) is selected which satisfies the 
mission constraints. This nominal trajectory consists of 
(1) a boost phase which extends from launch to injection, 
defined as the final termination of booster thrust, (2) a 
coast phase where the spacecraft moves from injection 
to the Moon, and (3) a terminal phase where the space- 
craft is in the close vicinity of the Moon. With present- 

guidance system is such that injection coordinate errors 
are generally large enough to require a spacecraft mid- 
course correction during the coast phase of the mission 
in order to null the resulting target errors. The statistical 
description of the magnitude of this correction offers a 
convenient means for expressing the launch vehicle 
injection accuracy. Indeed, it is the most reasonable way 
of expressing injection accuracy, since the goal of the 
injection guidance system is really to minimize the mag- 
nitude of the midcourse correction. Furthermore, the 
statistical magnitude of the midcourse correction offers 
a single number for expressing the injection accuracy, 

.‘zy !,unch iVr~1.ic!es, +e + ~ c c ~ - p c v  $! thp iniec-tinn 
- - - J  - - - - -  -- 

while a complete description of the accuracy at the injec- 
tion point would require a 6 X6 covariance matrix. 

This Report is concerned with investigating the tech- 
nique of expressing launch vehicle injection accuracy in 
terms of the spacecraft midcourse correction require- 
ments for Earth-Moon missions. The analysis deals mainly 
with the coast phase of the mission and discusses the 
diiferentiai corrections reiating injection errors to the tar- 
get errors. 

In the development of the Report, three coordinate 
systems are defined. In Section I11 it is shown that of 
these systems one is a “best” target coordinate system in 

tern the important variables of the subject. In addition, 
when numerical results are presented in this coordinate 
system, the reader is able to select a “worst-case” tra- 
jectory from the point of view of requiring the maximum 
midcourse correction for a given set of injection errors. 

ille b t x ~ s e :  illai ii gives ieiidci the i.apiiti:itji io &- 
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II. COORDINATE SYSTEMS 

It is convenient to define the following three coordinate 
systems: (1) the injection coordinate system, ( 2 )  the 
T-R-S, coordinate system, which has been widely used 
as a target coordinate system, and (3) a “best” target 
coordinate system. 

A. Injection Coordinate System 

The injection coordinate system is chosen such that 
four of the coordinates lie in the nominal plane of motion 
of the spacecraft at injection and the remaining two 
coordinates are normal to this plane of motion. This sys- 
tem is illustrated in Fig. 1, where x is the distance meas- 
ured along the (spherical) Earths surface from the launch 
pad to the spacecraft; R is the distance between the 
spacecraft and the center of the Earth; V is the com- 
ponent of the inertial velocity vector in the nominal plane 
of motion, r is the angle between V and the local hori- 
zontal, W is the lateral position of the spacecraft from 
the nominal plane of motion, and W is the lateral com- 
ponent of inertial. velocity (note that for a nominal tra- 
jectory, W and W are both zero). R,. is the radius of 
the Earth. 

Note that with this convention a perturbation in x 
causes a change in the direction of the inertial velocity 
vector, since r is measured from the local horizontal. 

Furthermore, to first-order, perturbations in x, R ,  V, 
and r cause no perturb?tions in W and W; likewise, 
perturbations in W and W cause no changes in the four 
in-plane coordinates. 

6.  T-R-S, Coordinate System 

The two-dimensional miss parameter, defined as B, is 
generally used to measure miss distances for lunar tra- 
jectories and is described by W. Kizner in Ref. 1. B has 
the desirable feature of being very nearly a linear func- 
tion of changes in injection conditions over the range of 
reasonable injection errors. Thc osculating conic at closest 
approach to the Moon is used in defining B. B is the 
vector from the Moon’s center of mass perpendicular to 
the incoming asymptotcl. Let S, be i i  unit vector in the 
direction of the incoming asymptote. The orientation of 
B in the plane normal to S, is described in terms of two 
unit vectors R and T, both normal to S,. T is conven- 
tionally taken parallel to a fixed reference plane and R 
completes a right-handed orthogonal system. Figure 2 
illustrates the coordinate system. 

2 

LOCAL HORIZONTAL 
r 

BOOST 

/ 

Fig. 1.  Injection coordinate system 

OUTGOING 
ASYMPTOTE 

PLANE OF THE - 
APPROACH 
TRAJECTORY 

TARGET-CENTERED 
HYPERBOLA 

Fig. 2. T-R-S, coordinate system 

The third component of the system is the target error 
in the S-direction computed under the assumption that 
the Moon’s mass is zero and is directly related to the 
error in the actual flight time to closest approach (Ref. 2). 

C. “Best” Target Coordinate System 

In the T-R-S, system we observe that the differential 
corrections relating the miss at the target to injection 
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errors vary with declination of the Moon and with injec- 
tion launch azimuth. Seeking to study the statistical effect 
of injection guidance errors for a set of nominal tra- 
jectories, we find that it is difficult to choose a worst-case 
trajectory from data computed in this system. 

For these reasons we wish to investigate a new set of 
coordinates and consider the inertial XTYT-WT co- 
ordinate system shown in Fig. 3. We assume that the 
Moon is a massless point constrained to move in the orbit 
of the Moon and we select a selenocentric coordinate 
system at the standard massless impact time. The YT-axis 
is in the instantaneous direction of the Earth and the 
WT-axis is normal to the plane of the Earth-centered 
spacecraft orbit. The XT-axis completes the right-handed 
system (XT YT XW,). Since the orientation of the 
X,Y,WT system is always the same relative to the space- 

Fig. 3. "Best" target coordinate system 

craft plane of motion (relative to the Earth), it seems 
reasonable to expect that the differential corrections de- 
fined in this system will be independent of the Moon's 
declination and of the injection launch azimuth. This 
fact will enable us to draw important conclusions later 
in the Report. 

111. BASIC EQUATIONS AND IMPORTANT VARIABLES 

In considering present-day lunar missions and analyz- 
ing expected injection errors, we find that the perturbed 
transfer trajectories have three important characteristics 
(Ref. 3): (1) the trajectories which are in error differ only 
slightly from the standard, hence linear perturbation 
theory may be used; ( 2 )  the sources of the injection 
errors - for example, gyro drift and accelerometer scale 
factor - are independent random variables with zero 
means; and (3) the magnitudes of the individual errors 
are distributed approximately to the Gaussian law. These 
three characteristics are exploited in the computation of 
injection accuracy and the related spacecraft midcourse 
correction requirements. The injection error vector is 
defined as 6q, where 

6q = E] 
and is obtained by linear perturbation analysis: 

6q = A6e 

where 6e is an n X 1 vector of launch vehicle component 
errors and A is a 6 X n matrix of differential corrections 
relating injection errors to launch vehicle guidance com- 
ponent errors. 

The miss at the Moon resulting from the injection 
errors can be approximated with linear perturbation 
theory as 

m = U6q 

where m is a 3 X 1 target error vector and U is a 3 X 6 
matrix of differential corrections which map injection 
errors to target errors. Defining K to be the 3 X 3 map- 
ping matrix which maps midcourse velocity perturbations 
to perturbations in position at the target, the midcourse 
velocity correction vector 6V required to null the target 
miss due to injection errors can be written as 

6V = -K- l  UAGe 

where K-l is the inverse of K .  Denoting the expectation 
operation by E {  * } ,  the covariance matrix of the mid- 
course correction is given by 

Av = K - I  U E  { ASe 6eTAT} UT ( K - ' ) T  

3 
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where UT is the transpose of U .  Let AI be the injection 
covariance matrix; then 

hp K-' U hIUT (K-')T (1) 

Equation (1) is used to describe the injection accuracy 
in terms of the 3 X 3 midcourse correction covariance 
matrix. This matrix gives the statistics of the midcourse 
correction required to place the spacecraft on a trajectory 
having the desired, or nominal, terminal conditions. Under 
the assumption that the error sources described in the Se 
vector are independent Gaussian random variables with 
zero means, the A, matrix can be related to the proba- 
bility of having a sufficient midcourse correction ca- 
pability. Figure 4 is an example of probability of sufficient 
capability as a function of the capability for three h / s :  
(1) a pencil-shaped distribution (one-dimensional Gaus- 
sian), (2) a pancake-shaped distribution (Rayleigh), and 
(3) a spherical distribution (chi-squared with three de- 
grees of freedom). 

A. Figure-of-Merit 

From Fig. 4, it is apparent that the trace of the mid- 
course covariance matrix relates injection accuracy to 
spacecraft midcourse correction requirements and can 
be used as a measure of the accuracy of the injection 
guidance system.* With this in mind, we define a space- 
craft midcourse figure-of-merit (FOM) as the square root 
of the trace of the midcourse correction covariance 
matrix. With the pencil-shaped distribution in mind, we 
conclude that it is desirable to have a midcourse correc- 
tion capability of at  least three times the F O M ,  where 
the F O M  is computed for a set of worst-case trajectory 
parameters. There are two figure-of-merits commonly in 
use: (1) miss-only figure-of-merit (FOM,) which assumes 
that the midcourse correction is designed to null the B 
plane errors disregarding the errors in flight time, and 
(2) miss-plus-time figure-of-merit (FOM,+T) which as- 
sumes that the midcourse will correct for errors both in 
miss and time of flight. 

B. Important Variables: "Miss-plus-Time" 
Correction 

We define a miss-plus-time midcourse correction figure- 
of-merit (FOM,,,) to be the square root of the trace of 
the midcourse covariance matrix. From Eq. (1) 

FOM,+T = dTFCEE { K - ' U x u ,  AI UIY," ( K - ' ) T }  
(2) 

*First pointed out in an unpublished paper by C. G. Pfeiffer of the 
Jet Propulsion Laboratory. 
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Fig. 4. Probability of sufficient capability 

where U,,, maps perturbations at  a fixed injection time 
in the x-R-V-r-W-W system to perturbations at  a fixed 
impact time in the XrYrWT target system. 

0 

0 0 0  

aw,. aw, 
0 0 0 0 -  aw -@ 

a Y T / a r  is zero only when the injection true anomaly is 
zero. However, for true anomalies between -10 and 
+20 deg, 

axT >> T ay 
ar ar 

hence a Y T / a r  can be assumed zero for the purpose of this 
Report. Since the X,YrW,. system considers the Moon 
to be a massless point moving in space, U,,, is a func- 
tion of only the in-plane standard trajectory parameters: 
(1) injection energy C:,,  (2) transfer trajectory perigee 
altitude Rp,  (3) injection true anomaly q,, and (4) Earth- 
Moon distance REM at the standard impact time. 

From Ref. 4, the K matrix may be approximated by 
time-to-go, tgo, times the identity matrix, where t,, is the 
standard impact time less the midcourse maneuver time. 
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Equation (2) then may be written as 

1 
%O 

FOM,+T = - dTREE { uxvw A, u l y w }  (3) 

For present-day lunar missicns (either direct ascent or 
parking orbit) the perigee altitude of the transfer tra- 
jectory is relatively fixed. In addition, the midcourse 
maneuver is planned for a fixed time; hence t,, may be 
considered a known constant for any given trajectory. It 
therefore follows that for a given mission (that is, fixed 
perigee altitude and fixed maneuver time) FOMM+T is a 
function of (1) injection energy, (2) injection true anomaly, 
(3)  Earth-Moon distance at the impact time, and (4) the 
injection covariance matrix. 

FOMM+T = function (C3, qf, REM, A,) (4) 

C. Important Variables: “Miss-Only’’ Correction 

To consider the important variables for a miss-only 
midcourse correction (flight time not to be corrected), 
Eq. (3) is rewritten as 

1 
t,O 

FOMM+T = - d m  {UT, ,  AI VFRs} (5) 

Noting that 

and that 

ro i  

it can be shown that 

where 

s = [;;I 
It  follows from Eq. (8) that for a given mission the miss- 
only F O M  is a function of (1) injection energy, (2) injec- 
tion true anomaly, (3) Earth-Moon distance at the impact 
time, (4) injection covariance matrix, and ( 5 )  direction of 
the S vector. 

(9) F O M ,  = function (C3,  qI, REM, AI,  S) 
or 

where UT,, is the matrix of differential corrections relat- 
ing per turbat ions a t  a fixed injection t ime in the  
x-R-V-r-W-W system to perturbations at  a fixed impact 
time in the T-R-SI massless target coordinate system, 
and where 

A miss-only maneuver corrects errors only in the K-’l 
plane and does not correct errors in the S-direction. 
Hence, we define the miss-only figure-of-merit (FOMM) as 

(7) 

With a few minor assumptions, the direction of S can be 
obtained analytically. 

D. Direction of S 
The S-vector is in the direction of the incoming asymp- 

tote of the selenocentric conic. Considering the Moon to 
be a massless point moving in space, S is a unit vector in 
the direction of the velocity of the spacecraft relative to 
the Moon, Vrel. For simplicity, the Moon is assumed to 
move in a circular orbit. 

From Fig. 5 

and 

V = (V cos r, - V sin I’, 0)  

V, = (V, cos p ,  0, - V ,  sin p )  

5 
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Y, (DIRECTION OF 
EARTH ) 

Fig. 5. Direction of S-vector 

where r is the flight path angle of the spacecraft with 
respect to the Earth, V is the velocity of the spacecraft, 
V, is the velocity of the Moon, and p is the angle be- 
tween the Moon's plane of motion and the spacecraft's 
plane of motion (Moon assumed massless). After some 
manipulation we have 

V 
( G c o s r  - cosp, - - VN s i n r , s i n p  

( S S ,  SY, SlV) = 

J('>i+ VN 
1 - 2 (6) cos r cos p 

where 

1h V 
VN 

where K ,  is the gravitation constant of the Earth. Figure 6 
presents S as a function of C ,  and p, for an R p  of 90 
nautical miles and for maximum and minimum values 
of BEN. 

By noting that the Earth-Moon line of centers at time 
of standard impact is common to both the Moon plane 
of motion and the spacecraft plane of motion, one can 
approximate p by 

-0.8 

-0.4 

0 

---- 
0.4 

I I I I I I 

-0.8 

i 

- 0.4 

h w 

0.8 

0.4 

0 

=-1.5 

0 20 40 60 

P, deg 

Fig. 6. Components of h e c t o r  

where iN is the inclination of the Moon's orbit, eL is the 
launch latitude, sL is the launch azimuth, and 8~ is 
the declination of the Moon. Figures 7 and 8 present p 
as a function of lunar declination and launch azimuth 

cos iN cos BL sin X L  -+ (cos2 - cos2 BL sin2 2,) (sin2 iM - sin2 ON) 

(11) 

cosp = 
COS? eM 

6 
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Fig. 7. Angle between planes of motion. 
Inclination of Moon 20 deg 

for declinations of the Moon of 20 and 28 deg respec- 
tively (e, = 28.32 deg). 

For parking orbit missions when one has the flexibility 
to launch at any lunar declination, p generally takes on 
four values for any given value of declination. For ex- 
ample, when O M  = 10 deg, 2, = 90 deg, and iM = 20 deg, 
p = t9 and t_44 deg. p has two positive values (and 
two negative values) because a given value of lunar 
declination occurs twice in a given lunar month. There 
are two possible parking orbit coast times for any given 
transfer trajectory: a “long” coast and a “short” coast. 
Both positive values of p are associated with the short 
parking orbit coast time and both negative values of ,B are 
associated with the long parking orbit coast time. It fd- 
lows, then, that for a given launch azimuth, extreme values 
of ,8 occur a t  zero declination; for the short parking orbit 
nr \or t  +;mr. n Lnn : t n  -‘,..: -..m -r .&t;x,o . ,Ql . ,P zt zpvJ 

declination descending node and its minimum positive 
value at zero declination ascending node; for the long 
parking orbit coast time, p has its maximum negative 
value at zero declination ascending node and its mini- 
mum negative value at zero declination descending node. 

U ” U . J C  .““V) p I1-a 1L.l 1 * , U * I , 1 1 U L . .  y”““’.” .U.L.” 

80 

60 

40 

20 

m 

ci 

-20 

-4c 

-6C 

-8C 
-30 -20 -10 0 IO 20 3 

MOON DECLINATION OM. deg 

Fig. 8. Angle between planes of motion. 
Inclination of Moon 28 deg 

For direct ascent missions, launch is possible only 
when the Moon is near minimum (maximum negative) 
declination. For this case, which is really a subset of the 
parking orbit case, f i  is always positive (the short parking 
orbit) and takes on two positive values for a given value 
of negative declination (it is assumed that OL 2 iM) .  For 
a given launch azimuth and a direct ascent launch mode, 
p has its maximum positive value near zero declination 
descending node and its minimum positive value near 
zero declination ascending node. 

E .  Effect of Declination of the Moon on FOMM 
The effect of lunar declination on FOMM can be seen 

from the preceding analysis. Consider an injection error 
in velocity (or altitude) only. From Eq. (8) 

FOM; = FOM$+, - -$ [ Sx - ax, + S Y  31‘ 
t , o  aV 

Now FOMM+r is not a function of declination; hence the 
trajectory which maximizes FOMM for a given injection 

7 
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error in velocity is one which minimizes [SdX,/aV 
+ S,.aY,/?V]. Referring to Figs. 6, 9, and 10, it can be 
seen that SAY, ?XT/2V, S,., and 2YT/;lV all have the same 
sign and FOhl, is maximized when ,8 is maximized. For 
a parking orbit this occurs at zero declination descending 
node for the short parking orbit coast arc and zero 
declination ascending node for the long parking orbit 
coast arc. Consider an injection error x (or r). 

Again FOhl,,, is maximized when ,8 is maximized, which 
for parking orbit ascent implies zero declination descend- 

' &  
ing node for the short coast solution and zero declina- 
tion ascending node for the long coast solution. 

For an injection error in either W or W ,  FOM, is 
maximized at  zero declination ascending node for the 
short parking orbit coast case. However, from a practical 
point of view, out-of-plane injection errors are insignifi- 
cant, leading to the conclusion that the trajectory which 
maximizes FOM2,1 for a given FOMM+, is one which maxi- 
mizes ,8, which, as pointed out above, impacts the Moon 
at zero declination descending node for the short parking 
orbit coast solution and zero declination ascending node 
for the long parking orbit coast solution. For direct 
ascent, FORI, is maximized when the Moon is as near 
zero declination descending node as possible. 

IV. NUMERICAL RESULTS 

Figures 9-16 present the differential corrections in thc 
CJ.y,.,,, matrix as a function of injection energy, C:,; Earth- 
Moon distance at  the standard impact time, and 
injection time anomaly, v,. These results were obtained 
from a JPL conic trajectory computer program developed 
by W. Kirhofer and D. J. Roek. The range of C:, chosen 
represents trajectories with flight times between 50 and 
SO hr. 

MAXIMUM R'y 
Rp = 90 nautical miles 
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-0.21 k* I I I 
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Fig. 9. Variation of ?XT/?V with injection energy 

With one exception, ?\VT/?\$, the variations in the 
differential corrections are all consistent in that minimum 
injection energy and the maximum Earth-Moon distance 
yields the largest magnitude of each derivative. If one is 

MAXIMUM REM 
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Fig. 10. Variation of SYT/?V with injection energy 
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---- 

INJECTION ENERGY, km2/sec2 

Fig. 15. Variation of aWT/aW with injection energy 

not Foncerned with the insignificant contribution of errors 
in W, then the conclusion is that for a given set of injec- 
tion errors, the trajectory with minimum injection energy 
and maximum Earth-Moon distance gives the largest 
FOMM+T. The variation with injection true anomaly is 
minor. 

In order to check the conic differential corrections, 
these data are compared with data obtained from an 

launch Date 

C1, kmZ/recZ 

Flight time, hr 

lunar declination 

iM, deg 

Coast arc 

R E M ,  km 

RP, nautical miles 

ZL, deg 

71, deg 

P,  deg (Eq. 11) 

Ss (Eq. 10) 

SY (Eq. 10) 

Sw (Eq. 10) 

2.41 I 

-0.41 A I I I I 
-1.5 -1.0 -0.5 0 

INJECTION ENERGY, krn2/sec2 

Fig. 16. Variation of aWT/2W with injection energy 

Table 1. Definition of comparison trajectories 

1 

9 March '71 

- 1 S O  

79 

Zero J. 

28 

long 

0.406 - 10' 

90 

115 

0 

-8.2 

-0.77 

-0.63 

-0.15 

2 

23 Jan '62 

-0.96 

65 

Zero 1 
20 

Short 

0.404 * 1 0' 

100 

90 

3.38 

48.3 

-0.36 

-0.74 

0.56 

Trajectory 

3 

31 Jan '62 

- 1.57 

65 

Minimum 

20 

Short 

0.367 * 10' 

100 

90 

3.39 

20.5 

-0.66 

-0.68 

0.3 1 

4 

6 Feb '62 

- 1.58 

65 

Zero t 
20 

Short 

0.366 * 10' 

100 

90 

3.27 

8.3 

-0.72 

-0.68 

0.15 

5 

1 2  Feb '62 

-1.14 

65 

Maximum 

20 

Short 

0.396 - 10" 

100 

90 

3.29 

20.5 

-0.62 

-0.74 

0.29 

1 0  
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- as 
aq ae 

0.58X 10' -0.22X 10' 
0.60X 10' --0.20X 10' 

0.66X lo3  0.95X lo3  
0 . 7 2 ~ 1 0 ~  0 . 9 2 ~ 1 0 ~  

0.79X 10' 0.1 1 X 10' 
0.81 X 10' 0.1 1 X 10' 

0.75X 10' 0.29X 10' 
0.76 X 1 OD 0.26 X 10' 

0.49X 10' -0.33X 10' 
OSOXlO? -0.32X102 

0.72X l o 4  0.50X 10' 
0.64X lo '  0.57X 10' 

Table 2. Comparison of conic and n-body dataa 

Trajectory 

* - as - a l B /  
aq aq aq 

0.42X 10' -0.37X 10' 0.39x 10' 
0.43X 10' -0.36X 10' 0.36X 10' 

0.57X l o 3  0.1OX 10' 0.50X lo3  
0 . 6 8 ~ 1 0 ~  o . i ox104  0 . 7 3 ~ 1 0 ~  

0.71 X 10' 0.1 2 X  10' 0.59X 10' 
0.74X 10' 0.1 2 X  10' 0.78 X 10' 

0.55X los  0.47X los  0.50X 10' 
0.56 X 10' 0.45 X 1 Os 0.47 X 10' 

0.51 X 10' -0.16X 10' 0.53X 10' 
O.53X1O2 -0.17XlO' 0.56X10' 

0.62X 10' 0.20X 10' 0.64X lo' 
0.56X 10' 0.32X lo' 0.61 X lo '  

Source 

a M  
dq 

0.49X 10' 
0.50X 10' 

O.38X1O3 
0 . 5 5 ~  i o 3  

0.77X 10' 
0.59X10' 

0.63 X 10' 
0.64 X 10' 

0.57X10' 
0.57 X 1 0' 

0.76 X 1 O4 
0.73 X 10' 

as 
aq 
- 

-0.38 X 10' 
-0.34X 10' 

0.12X10' 
0 . 1 0 ~  10' 

0.13X 10' 
0.12XlO' 

0.49X 10' 
0.45 X 10' 

-0.17XlO' 
- 0.1 8 X 1 0' 

C.23 X 10' 
0.35 X 10' 

as 

Conic 
n-body 

Conic 
n-body 

Conic 
n-body 

Conic 
n-body 

Conic 
n-body 

Conic 
n-body 

-0.48X 10' 
-0.44X 13' 

0.14X 10' 
0.13X l o 4  

0.16X 10' 
0 . 1 6 ~  10' 

0.58 x 1 os 
0.62 X 10' 

0.90X 10' 
0.95 X 10' 

-0.67X 10' 
0.86X 10' 

0.40 X 10' 
0.41 X 10' 

0.81 X 10' 
0.97X lo3  

0.1oX 10' 
0.1 1 X 10' 

0.52 X 10' 
0.53X l o s  

0.60 X 10' 
0.63 X 10' 

0.45 X 10' 
0.46X 10' 

&Units are in seconds, meters. and radians. 

2 3 4 

as 
aq 
- 

-0.40 X 10' 
-0.41 X 10' 

0.1 1 x 1 0  
0.1ox 10' 

0.13X10' 
0.1 2 x 10' 

0.52X 10' 
0.53 x 1 os 

-0.8OX 10' 
-0.93X10' 

0.1ox 10' 
0.21 x 10' 

n-body trajectory program (Ref. 5). This comparison is 
made for five trajectories, the characteristics of each 
being given in Table 1. Table 2 presents the numerical 
comparison. For the conic case (Ref. 6) 

and 

a 1 1 

where (Sa, S y ,  SI,.) is obtained from Eq. (10) and aX,/aq, 
aY,/aq, aW,/aq from Figs. 9-16. I t  can be seen that the 
results agree quite well. S H' s x  + - s y  Jr - ay, aw, as - ax, 

84 a4 a4 aq 
- _ -  

V. CONCLUSIONS 

From this analysis, the following conclusions can be 
stated: 

For a given mission (fixed perigee altitude and fixed 
midcourse maneuver time), the miss-plus-time mid- 
course figure-of-merit is a function of (1) injection 
energy, ( 2 )  injection triie annmaly: ( 3 )  Earth-Moon 
distance at  the impact time, and (4) the injection 
covariance matrix, 

For a given mission, the miss-only figure-of-merit is 
a function of (1) injection energy, (2) injection true 
anomaly, ( 3 )  Earth-Moon distance at  the impact 

3. 

time, (4) injection covariance matrix, (5) launch azi- 
muth, and (6) lunar declination at the impact time. 

For a given injection covariance matrix, the tra- 
jectory which maximizes both FOMM+T and F O M M  
is one which is launched with minimum injection 
energy and arrives at the ivioon when the Earth- 
Moon distance is maximum and the Moon is at zero 
declination descending node for the short parking 
orbit coast, zero declination ascending node for the 
long parking orbit coast, and near zero declination 
descending node for direct ascent. Injection true 

11  
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t. 
anomaly is of minor significance. For an injection 
energy of C, = -1.5 km2/secz, one such parking 
orbit worst-case trajectory occurs with a launch 
date 9 March 1971 (short coast). 

In addition, it appears that differential corrections 
obtained from conic data are sufficiently accurate for 
expressing launch vehicle accuracy in terms of a space- 
craft midcourse correction figure-of-merit. 

NOMENCLATURE 

A 6 X n matrix of differential corrections 
relating injection errors to launch vehicle 
guidance component errors 

B Two-dimensional miss vector 

T Unit vector in T-R-S, target coordinate 
system 

3 X 6 matrix of differential corrections 
relating injection errors to target errors 

U 

V Component of injection velocity in stand- 

V,,, Maximum midcourse correction capability 

c:, Injectionenergy c:, = vz - 2 ( 2K R ) ard plane of motion 
FOM, Miss-only figure-of-merit 

FOM,,, Miss-plus-time figure-of-merit Var Velocity of Moon 
iM Inclination of Moon 

K 3 X 3 matrix of differential corrections 
relating midcourse velocity perturbations 
to miss perturbations a t  target W Lateral speed at injection 

Vre, Velocity of spacecraft relative to Moon 

W Lateral position at  injection 

K ,  Gravitational constant of Earth 

m 

R Distance between center of Earth and 

3 X 1 target error vector 

spacecraft 

R E  Radius of Earth 
R E ,  Earth-Moon distance 

Rp Perigee altitude of transfer orbit 
RMS Root-mean-square 

R Unit vector in T-R-S, target coordinate 
system 

S Unit vector in the direction of seleno- 
centric incoming asymptote expressed in 
XrYrWT coordinate system 

Unit vector in direction of selenocentric 
incoming asymptote 

Unit vector in direction of selenocentric 
outgoing asymptote 

Time-to-go (time of impact less time of 
midcourse correction) 

S, 

So 

too 

WT Unit vector in XTYrWT target coordi- 
nate system 

Down-range distance at  injection (spheri- 
cal Earth) 

Unit vector in XTYT-WT target coordi- 
nate system 

Unit vector in X,YTWT target coordi- 
nate system 

Angle between Moon plane of motion and 
spacecraft plane of motion (massless 
Moon) 

x 

X, 

YT 

I' Flight path angle 

6e n X 1 vector of launch vehicle component 
errors 
6 X 1 injection coordinate error vector 6q 

6V Midcourse velocity correction vector 

7, Injection time anomaly 

eL Latitude of launch pad 
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NOMENCLATURE (tont’d 1 

Declination of Moon u2 Variance 
Injection covariance matrix 

Midcourse velocity correction covariance 
matrix 

Transpose of matrix ( 0 )  

(*)-I Inverse of matrix (*) 

Linear corre!ation coeffcient E { * }  Expectation operator of matrix ( 0 )  

Launch azimuth dTiGCE{*} Square root of trace of matrix ( 0 )  
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